
Visual Debugging Technology with Pencil Code: Position
Paper

Amanda Boss
Harvard College

aboss@college.harvard.edu

Cali Stenson
Wellesley College

cstenson@wellesley.edu

Jeremy Ruten
University of Saskatchewan

jeremy.ruten@gmail.com

ABSTRACT
Pencil Code, a web-based program, utilizes blocks to aid stu-
dents in creating code. This paper presents work creating a
debugging tool to further improve Pencil Code and create an
environment where students can better learn to understand
code by having a way to visually trace its operations.

1. INTRODUCTION
First-time programmers do not naturally understand how to
debug programs, so we propose a tool which helps beginners
trace and debug the execution of their code without requir-
ing manual debugging with breaks and print statements.
Often times, when students are debugging their programs
for the first time, they have the most difficulty with tracing
through the program. When Fitzgerald et al. conducted a
study, they found that a majority (57%) of the students had
the most difficulty with finding the problem with the code
[1]. In the same study, structured interviews with the stu-
dents showed that the most commonly mentioned strategy
for debugging code was tracing followed by testing and iso-
lating the problem [1]. Even when first-time programmers
do fix one of the bugs in their programs, they often have dif-
ficulty applying those same debugging principles for future
bugs [2]. This stems from an inability to uniformly isolate
bugs and understand code flow [2]. Our tool automates the
process of isolating problems in the code and tracing code
to offer a dynamic learning experience for the user.

2. OVERVIEW
Our debugging tool is a slider element that depends on a
tracing transpiler and works in tandem with code annota-
tions. Figure 3 shows the interaction between the three com-
ponents.

2.1 Pencil Code
Our debugging tool is integrated into Pencil Code [3], a
block-based online programming tool. Pencil Code allows
users to convert the blocks into text and enter an open sand-
box where they can create any program that is possible with
CoffeeScript, JavaScript, and HTML. The environment is

ideal for learning and is geared towards first-time program-
mers of a wide range of ages.

2.2 Tracing Transpiler
To help students see how their code is connected to what is
happening when it runs we trace each line as it is animated
on the canvas and allow students to highlight a given line
to show what the animation looked like when that line ran.
Tracing is a subtle, but useful, visual that allows students
to see how their program works.To get a complete trace of
a student’s program as it runs, we pass the student’s pro-
gram through a code instrumenter before running it. Each
statement in the program is instrumented with two function
calls, one before the statement and one after, that send the
location of that statement, as well as values of variables and
function calls that are being tracked, to a listener that col-
lects these events into an array containing the full trace of
the program.

For example, if the following program is instrumented,

var x = 2;

var y = x + x;

then the code instrumenter will output a program that looks
something like this:

ide.trace({type: ’before’, line: 1,

vars: [{name: ’x’, value: x}]});

var x = 2;

ide.trace({type: ’after’, line: 1,

vars: [{name: ’x’, value: x}]});

ide.trace({type: ’before’, line: 2,

vars: [{name: ’y’, value: y}, {name: ’x’, value: x}]});

var y = x + x;

ide.trace({type: ’after’, line: 2,

vars: [{name: ’y’, value: y}, {name: ’x’, value: x}]});

The code instrumenter works by parsing the input program
into an abstract syntax tree (AST), and then adding the
instrumented code before and after each node in the AST
that is recognized as a statement. The AST is also used to
find all variables and function calls within a statement, so
that they can be tracked. Variables are tracked by passing
their name and value directly into each event. Return values
of function calls are tracked by assigning each function call to
a temporary variable, and passing the value of the temporary
variable into the event. Once the program has been fully

1



instrumented in AST form, it is compiled and run in the
Pencil Code environment. As trace events are raised by the
instrumented program, we use the information in each event
to visualize what the program is currently doing, and allow
the student to go ”back in time” to any event to see what
state their program was in at that time.

2.3 Visualization of Events
One of the primary features for the visual debugger is an
interactive slider element that allows users to have an in-
depth understanding of code flow. When the code in the ed-
itor panel is compiled and there exists more than two lines
of code, the slider element appears. The line number re-
quirement is to ensure sufficient complexity that warrants a
debugging slider element. Each ”tick” on the slider element
represents an event that was traced by the compiler as a
result of the inputted code. As users drag and click through
the slider they are able to see the corresponding line of code
highlighted as well as see the canvas reflect what the turtle
animations looked like at that line of code. As users are
scrolling through the slider, they are also able to see the
arrows and variable tracking that occurred at that point in
the code. The goal of this feature is to not only understand
the sequence of events that occurred in the users’ code, but
to allow the users to grasp the fundamentals of important
programming concepts. These concepts include, but are not
limited to, looping and recursion. As users update their code
and re-run their program, the slider element is also updated
to reflect their changes. The slider works by keeping track
of the state of events as code is run and storing those events
so that they can be replayed after the code has run. The
events from the transpiler are given to the slider and the
slider indexes the events as a new value is selected on the
slider and shows a visual of which line was run and what
was happening on the screen at that line.

2.4 Code Annotations
Another feature we developed are arrows that help students
understand code flow. The code annotations that show ar-
rows were implemented to help students understand how
lines of code are being processed. Arrows are deployed by
the debugger when it traces an event on a line that does not
immediately follow the line before it, as seen in Figure 1.The
arrows were created with the idea that students would better
understand loops and function calls if an arrow was drawn
to direct their attention to the jump in lines since one would
normally expect lines to run in order when new to program-
ming. Arrows point out the repetitive nature of loops as well
as the way code inside of functions is run on a function call.
The arrows are designed to flash on the screen as code runs
and to show when the slider highlights a line that an arrow
is drawn from. Arrows are assigned to pairs of events from
the transpiler that are nonlinear in code lines. When the
slider shows the arrows those events that have had an arrow
assigned to it will call the arrow function and re-deploy the
arrows the user saw during runtime. Variable tracking al-
lows us to show the values of variables as they are updated
and passed into functions. As seen in figure 2, we show the
variables as a pop-up on the right-hand side of a line of code
so that users can see what the value of their variable was
at a given point in runtime. Every variable used in an ex-
pression is displayed for the user alongside that expression.
The return values of function calls used in the expression
are also displayed. These return values allow the user to

Figure 1: Arrows in Block Mode

Figure 2: Variable tracking with a factorial function
in Pencil Code

be aware of every value going into each expression, helping
them track down where bad values might be coming from
when they have a bug in their code. In the case of assign-
ment statements, the old value of the variable is displayed
before the statement executes, and the displayed value up-
dates with the new value when the statement finishes (the
debugger may have stepped into multiple functions in the
meantime).

3. RELATED WORK
There are a variety of online programs to help users with
the debugging process. We discuss those that influenced
our work.

3.1 Python Tutor
One of the most prevalent programs is Python Tutor, a
visualization web-embedded tool that allows users to step
through the code at execution and view elements currently
in the stack and heap [4]. This concept of tracing through
the code at execution has proven to be successful in the
debugging process as it mimics what a teacher would ex-
plain to students on a whiteboard. However, no version of
Python Tutor for other languages such as JavaScript,which
gives first-time programmers more flexibility to create web-
based programs, currently exists. Furthermore, the audience
of Python Tutor is geared towards students in an introduc-
tory computer science class [4]. Pencil Code is designed to
be a self-learning tool for all ages; thus, we have created a
more accessible debugger tool than that offered by Python
Tutor.

3.2 Gidget
Another debugging tool, primarily geared towards a younger
audience, is a web-based game called Gidget [5]. The game
consists of a variety of levels centered around helping a char-
acter called Gidget. In order to pass each level, users must
fix the bug in the code. Users are equipped with a vari-
ety of tools such as tracing through the program and going
step by step. By gamifying the debugging experience as well
as making it more interactive, Gidget is able to appeal to
younger first-time programmers [6]. However, Gidget does

2



Figure 3: Debugging Flow in Pencil Code

not support an open sandbox environment for users like Pen-
cil Code.

4. USER STUDY
To get a preliminary idea of how students would benefit from
our visual debugger we did a study of 7 students. We asked
each student to debug a program using the existing Pencil
Code site without our features and then to debug another
program using a test site with our features. We then asked
the students questions about how they debugged code and
how they felt about the arrows and slider features we had im-
plemented. Most of the users (6/7) said that they thought
the slider helped them understand the code, and some of
the users (2/7) found the arrows helpful (the other users did
not debug programs with loops or non-linear code flow). At
the end of our study we asked the students what techniques
they utilized to help them debug (Figure 4). Only one stu-
dent cited using our tracing tools as a way to help them
to debug code. This result could suggest that students do
not find our tools helpful; however, we believe the students’
practices were affected by using a site without the tools first
and not feeling as though they need them the second time
around. All of the students found it was important to read
code carefully when you are debugging it, and our debug-
ger is designed to emphasize your reading with a visual that
further explains how your code works. With further inves-
tigation we aim to find that students use our tools to com-
plement how they read code and train themselves to debug
things automatically.

5. CONCLUSION
Pencil Code is an open sandbox and our debugger encour-
ages students to fearlessly create programs and see how they
work. Our debugger will allow students to improve their pro-
grams without the learning curve of understanding break-
points and logging to help figure out programming mistakes.

Figure 4: Results from Survey

With the support of our debugger, students can watch as
their variables change, see which line of their code is run-
ning, and re-watch how their code works. These features
create an environment that teaches you how to understand
how your code behaves. Knowing how their code behaves
will help students figure out what they should change if it
does not work in the way they expect. With the debugger,
users of Pencil Code can learn to write more complicated
programs and become experienced programmers who pro-
gram easily without the support of a blocks structure.

6. FUTURE WORK
To fully understand the effect our tools have on students
we would like to get more user feedback on our debugger
tools. This feedback will come from future studies and user
responses to our features when they are in production on
pencilcode.net. In addition to understanding how people
use and appreciate current features, there are myriad of fea-
tures that we hope to add to our debugging tool. One of the
observations that we made during our user study was that
participants were more likely to use buttons rather than a
slider UI. Similar to Python Tutor, we plan on adding but-
tons that will perform the same task as the slider and will
allow users to go forward and back one step in the program.

7. REFERENCES
[1] Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L.,

Simon, B., and Zander, C. Debugging From the
Student Perspective. IEEE Transactions On Education,
53 (3). 390-396.

[2] Ahmadzadeh, M., Elliman, D., and Higgins, C. An
Analysis of Patterns of Debugging Among Novice
Computer Science Students. in Innovation and
technology in computer science education: Proceedings
of the 10th annual SIGCSE conference, (Libson,
Portugal, 2005), 84-88.

[3] Bau, D., Bau, D.A., Dawson, M., and Pickens, S.C.
Pencil code: block code for a text world. in Interaction
Design and Children: Proceedings of the 14th
International Conference, (Massachusetts, USA 2015),
445-448.

[4] Guo, Philip. Online Python Tutor: Embeddable
Web-Based Program Visualization for CS Education,
March 2013. Retrieved July 22, 2015,from Python
Tutor: http://pythontutor.com.

[5] Lee, M.J. Gidget: An online debugging game for
learning and engagement in computing education. in

3



IEEE Symposium on Visual Languages and
Human-Centric Computing, (Melbourne, Australia
2014), 193-194.

[6] Lee, M.J. and Ko, A.J. Personifying programming tool

feedback improves novice programmers’ learning in
Proceedings of the seventh international workshop on
computing education research, (Rhode Island, USA

2011), 109-116.

4


